Exploring the correlation between sanitation standards and school performance in Brazil: a clustering analysis

Explorando a correlação entre saneamento básico e performance escolar no Brasil: uma análise de cluster

Autores

  • Karoline Louize Macedo Granja Especialista em Data Science e Analytics. SQS 402 Bloco G, Apt. 201, Asa Sul, 70236-070, Distrito Federal, Brasília, Brasil https://orcid.org/0009-0007-6080-3816
  • Manoel Brod Siqueira Doutorando em Administração de Empresas na Fundação Getúlio Vargas. Quadra 2, Bloco L, Lote 06, 6° andar, Asa Norte, 70040-002, Distrito Federal, Brasília, Brasil https://orcid.org/0000-0002-8033-0055

DOI:

https://doi.org/10.22167/2675-441X-2025838

Palavras-chave:

Academic performance, Brazilian education, Brazilian states, correlation analysis, sanitation quality

Resumo

Sanitation and education are two critical areas requiring immediate attention and improvement in Brazil. Students facing health issues have greater challenges in succeeding academically, as they may experience hospitalizations and difficulties concentrating due to illness. Although various factors can contribute to illness, this paper focuses on diseases resulting from inadequate sanitation conditions. The main objective of this research is to explore the correlation between sanitation standards and academic performance indices, considering sanitation, education, and health indices. In addition, the Brazilian states are clustered based on their indices. Pearson’s correlation coefficient was applied to measure the continuous variables’ statistical correlation. This research explores both positive and negative correlations. Clustering is an unsupervised machine learning method that groups data into clusters based on their similarities and patterns. The data collected in this study are sourced from prominent government databases, namely the Instituto Brasileiro de Geografia e Estatística (IBGE), the Instituto Nacional de Estudos e Pesquisas Educacionais Anísio Teixeira (Inep), and the Sistema Único de Saúde (SUS), covering the period from 2007 to 2020, and all Brazilian states. Results indicate a clear positive correlation between inadequate sanitation standards and higher hospitalization rates, or low sanitation rates and poorer school performance indices. This influences the students’ dispersion of age-grade and the non-attendance index, resulting in an adverse whirlpool effect on their academic performance. Thus, it is concluded that the initial hypothesis is confirmed, and that the government should raise its investments in sanitation to support the investments in education.

Referências

Murray, J. 2009. The Wider Social Benefits of Higher Education: What do We Know about Them? Australian Journal of Education 53(3): 230-244. https://doi.org/10.1177/0004944109053003.

Lonescu, D.D.; Ionescu, A.M.; Jaba. E. 2013. The investments in education and quality of life. Journal of Knowledge Management. Economics and Information Technology 3(6): 12. Available at: https://econpapers.repec.org/article/sppjkmeit/spi13-12.htm. Accessed: Mar. 1, 2023.

Castro, J.E.; Heller, L. 2009. Interfaces and inter-sector approaches: water, sanitation and public health. In: Castro, J.E.; Heller, L. Water and Sanitation Services. Routledge. Oxfordshire. UK. https://doi.org/10.4324/9781849773751.

Pereira, M.A.; Marques, R.C. 2022. Technical and Scale Efficiency of the Brazilian Municipalities’ Water and Sanitation Services: A Two-Stage Data Envelopment Analysis. Sustainability 14(1): 199. https://doi.org/10.3390/su14010199.

Cavalcanti, A.; Teixeira, A.; Pontes, K. 2020. Evaluation of the Efficiency of Basic Sanitation Integrated Management in Brazilian Municipalities. International Journal of Environmental Research and Public Health 17(24): 9244. https://doi.org/10.3390/ijerph17249244.

Ferreira, D.C.; Graziele, I.; Marques, R.C.; Gonçalves, J. 2021. Investment in drinking water and sanitation infrastructure and its impact on waterborne diseases dissemination: The Brazilian case. Science of the Total Environment 779: 146279. https://doi.org/10.1016/j.scitotenv.2021.146279.

Charlesworth, S.M.; Kligerman, D.C.; Blackett, M.; Warwick, F. 2022. The Potential to Address Disease Vectors in Favelas in Brazil Using Sustainable Drainage Systems: Zika, Drainage and Greywater Management. International Journal of Environmental Research and Public Health 19(5): 2860. https://doi.org/10.3390/ijerph19052860.

UNICEF; WHO. State of the World’s Sanitation: An Urgent Call to Transform Sanitation for Better Health. Environments. Economies and Societies. New York: United Nations Children’s Fund [UNICEF] and the World Health Organization. 2020. Available at: https://www.who.int/publications/i/item/9789240014473. Accessed: Mar. 5, 2023.

United Nations. Sustainable Development Goals. 2015. Available at: https://sdgs.un.org/goals. Accessed: Feb. 23, 2023.

Sousa, V.D.; Driessnack, M.; Mendes, I.A.C. 2007. An overview of research designs relevant to nursing: Part 1: quantitative research designs. Revista Latino-Americana de Enfermagem 15(3): 502-507. https://doi.org/10.1590/S0104-11692007000300022.

Lakatos, E.M.; Marconi, M.D.A. 2003. Fundamentos de metodologia científica. 5ed. Atlas, São Paulo, SP, Brasil. Available at:https://ria.ufrn.br/jspui/handle/123456789/3097. Accessed: Jun. 2, 2025.

Instituto Brasileiro de Geografia e Estatística [IBGE]. Dados Abertos. Available at: https://www.ibge.gov.br/acesso-informacao/dados-abertos.html. Accessed: Mar. 1, 2023.

Instituto Nacional de Estudos e Pesquisas Educacionais Anísio Teixeira [Inep]. Taxa de distorção idade-série. Available at: https://www.gov.br/inep/pt-br/acesso-a-informacao/dados-abertos/indicadores-educacionais/taxas-de-distorcao-idadeserie. Accessed: Mar. 1, 2023.

Pesquisa Nacional de Saneamento Básico. Sistema IBGE de Recuperação Automática [SIDRA]. Available at: https://sidra.ibge.gov.br/pesquisa/pnsb/pnsb-2017. Accessed: Mar. 1, 2023.

Ministério da Saúde DataSUS. Dados Abertos. Available at: https://datasus.saude.gov.br/acesso-ainformacao/. Accessed: Mar. 1, 2023.

Benesty, J.; Chen. J.; Huang. Y.; Cohen. I. 2009. Pearson correlation coefficient. In: Noise reduction in speech processing. Springer Topics in Signal Processing, vol 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00296-0_5.

Montgomery, D.C.; Peck, E.A.; Vining, G.G. 2021. Introduction to linear regression analysis. John Wiley & Sons, USA.

Bock, H.H. 2007. Clustering Methods: a history of k-means algorithms. In: Brito, P.; Cucumel, G.; Bertrand, P.; Carvalho, F. Selected contributions in data analysis and classification. Studies in classification, data analysis, and knowledge organization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73560-1_15.

Microsoft Support. Available at: https://support.microsoft.com/en-us/office/what-is-excel-94b00f50-5896-479c-b0c5-ff74603b35a3. Accessed: Jan. 12, 2025.

R Project “about R”. Available at: https://www.r-project.org/about.html. Accessed: Sept. 5, 2023.

Governo Federal. Portal de Dados Abertos. Available at: https://dados.gov.br/dados/conjuntos-dados/. Accessed: Jan. 12, 2025.

International Classification of Diseases [ICD] 11th Revision available at: https://icd.who.int/pt/. Published in May 2019.

Fernandes, F.S.; Domingues, J.D.R. 2017. Educação infantil no estado de São Paulo: condições de atendimento e perfil das crianças. Educação e Pesquisa 43(1): 145-160. https://doi.org/10.1590/S1517-9702201701155227.

Heyer, L.J.; Kruglyak, S.; Yooseph. S. 1999. Exploring expression data: identification and analysis of coexpressed genes. Genome Research 9(11): 1106-1115. https://doi.org/10.1101/gr.9.11.1106.

Jasper, C.; Le, T.T.; Bartram, J. 2012. Water and Sanitation in Schools: A Systematic Review of the Health and Educational Outcomes. International Journal of Environmental Research and Public Health 9(8): 2772-2787. https://doi.org/10.3390/ijerph9082772.

Darvesh, N.; Das, J.K.; Vaivada, T.; Gaffey, M.F.; Rasanathan; K.; Bhutta, Z.A.; Social Determinants of Health Study. 2017. Water, sanitation and hygiene interventions for acute childhood diarrhea: a systematic review to provide estimates for the Lives Saved Tool. BMC Public Health 17(4): 776. https://doi.org/10.1186/s12889-017-4746-1.

Poague, K.I.; Blanford, J.I.; Martínez, J.A.; Anthonj, C. 2023. Water, sanitation and hygiene (WASH) in schools in Brazil pre-and peri-COVID-19 pandemic: Are schools making any progress?. International Journal of Hygiene and Environmental Health 247: 114069. https://doi.org/10.1016/j.ijheh.2022.114069.

Klingerman, D.C.; Cardoso, T.A.O.; Cohen, S.C.; Azevedo, D.C.B.; Toledo, G.d.A.; Azevedo, A.P.C.B.; Charlesworth, S.M. 2022. Methodology for a Comprehensive Health Impact Assessment in Water Supply and Sanitation Programmes for Brazil. International Journal of Environmental Research and Public Health (19): 12776. https://doi.org/10.3390/ijerph191912776.

Cha, S.; Jin, Y.; Elhag, M.S.; Kim, Y.; Ismail, H.A.H.A. 2021. Unequal geographic distribution of water and sanitation at the household and school level in Sudan. PLoS One 16(10): e0258418. https://doi.org/10.1371/journal.pone.0258418.

Agência de Notícias IBGE. Available at: https://agenciadenoticias.ibge.gov.br/agencia-sala-de-imprensa/2013-agencia-denoticias/releases/28324-pnsb-2017-abastecimento-de-agua-atinge-99-6-dos-municipios-mas-esgoto-chega-a-apenas-60-3. Accessed: May 14, 2025.

Downloads

Publicado

2025-08-01

Como Citar

Louize Macedo Granja, K., & Siqueira, M. B. (2025). Exploring the correlation between sanitation standards and school performance in Brazil: a clustering analysis: Explorando a correlação entre saneamento básico e performance escolar no Brasil: uma análise de cluster. Quaestum, 6, 1–14. https://doi.org/10.22167/2675-441X-2025838

Edição

Seção

Artigos