University community attitudes to the use of genetic editing


  • Pedro Alexander Velasquez Vasconez PhD researcher
  • Wendy Teresa Abregu Olarte
  • Priscila Fortes



Eugenics; , Designer babies;, Gene therapy;, Mutation


Genetic editing has many applications in all areas of society
but it can also have unpredictable consequences. The objective of this
research was to study the attitudes of the university community to
the use of genetic editing in agricultural, environment, health and
improvement of the human species. Students completed an online
questionnaire written in three languages such as English, Spanish and
Portuguese, which was made available in nine countries. Knowledge
of words associated with the genetic editing technique increases
with the level of education of the students. Doctoral students showed
greater support for genetic editing in humans. There is a high degree
of acceptance for genome modification techniques for purposes
such as consumption, industry or health (~70%). While it had a great
rejection (78%) to the genetic intervention for the improvement of
physical or cognitive characteristics. Most student’s express that the
government should regulate and invest in research on genetic editing.
Most students are optimistic or slightly optimistic about advances in
this technology, especially for the benefit of health and the agricultural
sector. This research provides an overview of students’ opinion of the
genetic editing and serves as a basis for future studies.


Bhaya, D.; Davison, M.; Barrangou, R. 2011. CRISPR-Cas Systems in Bacteria and Archaea: Versatile Small RNAs for Adaptive Defense and Regulation. Annual Review of Genetics, 45(1): 273–297.

Bintu, L.; Ishibashi, T.; Dangkulwanich, M.; Wu, Y.Y.; Lubkowska, L.; Kashlev, M.; Bustamante, C. 2012. Nucleosomal elements that control the topography of the barrier to transcription. Cell, 151(4): 738–749.

Blendon, R.J.; Gorski, M.T.; Benson, J.M. 2016. The public and the Gene-Editing revolution. New England Journal of Medicine, 374: 1406–1411.

Cong, L.; Ran, F.A.; Cox, D.; Lin, S.; Barretto, R.; Habib, N.; Hsu, P.D.; Wu, X.; Jiang, W.; Marraffini, L.A.; Zhang, F. 2013. Multiplex genome engineering using CRISPR/Cas systems. Science, 339(6121): 819–823.

Gaskell, G.; Bard, I.; Allansdottir, A.; Cunha; R.V.; Eduard, P.; Hampel, J.; Hild, E.; Hofmaier, C.; Kronerger, N.; Laursen, S.; Meijknecht, A.; Nordal, S.; Quintanilha, A.; Revuelta, G.; Saladié, N.; Sándor, J.; Santos, J.B.; Seyringer, S.; Songh, I.; Somsen, H.; Toonders, W.; Torgersen, H.; Torres, V. Varju, M.; Zwart, H. Public views on gene editing and its uses. Nature Publishing Group, 35: 1021-1023.

Gerten, D., Heck, V., Jägermeyr, J., Bodirsky, B.L., Fetzer, I., Jalava, M., Kummu, M., Lucht, W., Rockström, J., Schaphoff, S.; Schellnhuber, H.J. 2020. Feeding ten billion people is possible within four terrestrial planetary boundaries. Nature Sustainability, 3(3): 200–208.

Huang, C.; Sun, H.; Xu, D.; Chen, Q.; Liang, Y.; Wang, X.; Xu, G.; Tian, J.; Wang, C.; Li, D.; Wu, L.; Yang, X.; Jin, W.; Doebley, J. F.; Tian, F. 2018. ZmCCT9 enhances maize adaptation to higher latitudes. Proceedings of the National Academy of Sciences, 115(2): E334–E341.

Ishii, T.; Araki, M. 2016. Consumer acceptance of food crops developed by genome editing. Plant Cell Reports, 35(7): 1507–1518.

Komor, A.C.; Kim, Y.B.; Packer, M.S.; Zuris, J.A.; Liu, D.R. 2016. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature, 533(7603): 420–424.

McCaughey, T.; Sanfilippo, P.G.; Gooden, G.E.C.; Budden, D.M.; Fan, L.; Fenwick, E.; Rees, G.; MacGregor, C.; Si, L.; Chen, C.; Liang, H.H.; Baldwin, T.; Pébay, A.; Hewitt, A.W. 2016. A global social media survey of attitudes to human genome editing. Cell Stem Cell, 18(5): 569–572.

McDonald, J.I.; Celik, H.; Rois, L.E.; Fishberger, G.; Fowler, T.; Rees, R.; Kramer, A.; Martens, A.;Edwards, J.R.; Challen, G.A. 2016. Reprogrammable CRISPR / Cas9-based system for inducing site- specific DNA methylation. Biol Open., 5(6): 866-874.

Persaud, A.; Desine, S.; Blizinsky, K.; Bonham, V.L. 2019. A CRISPR focus on attitudes and beliefs toward somatic genome editing from stakeholders within the sickle cell disease community. Genetics in Medicine, 21(8):1726-1734.

Pinello, L.; Canver, M.C.; Hoban, M.D.; Orkin, S.H.; Kohn, D.B.; Bauer, D.E.; Yuan, G.C. 2016. Analyzing CRISPR genome-editing experiments with CRISPResso. Nature Biotechnology, 34 (7): 695–697. Nature Publishing Group.

Ricroch, A. 2019. Global developments of genome editing in agriculture. Transgenic Research, 28(S2): 45–52.

Ricroch, A.; Clairand, P.; Harwood, W. 2017. Use of CRISPR systems in plant genome editing: toward new opportunities in agriculture. Emerging Topics in Life Sciences, 1(2): 169–182.

Schaefer, K.A.; Wu, W.H.; Colgan, D.F.; Tsang, S.H.; Bassuk, A.G.; Mahajan, V.B. 2017. Unexpected mutations after CRISPR-Cas9 editing in vivo. Nature Methods, 14(30): 547–548.

Scheufele, D.A.; Xenos, M.A.; Howell, E.L.; Rose, K.M.; Brossard, D.; Hardy, B.W. 2017. U.S. attitudes on human genome editing. Science, 357(6351): 553–554.

Shew, A.M.; Nalley, L.L.; Snell, H.A.; Nayga, R.M.; Dixon, B.L. 2018. CRISPR versus GMOs: Public acceptance and valuation. Global Food Security, 19: 71–80.

Velasquez-Vasconez, P.A., Chaves, G., Jurado, C.L.; Ruiz, H.E. 2014. Productivity of lettuce Lactuca sativa in high tunnel conditions on Vitric haplustands soil. Revista de Ciencias Agrícolas, 31(2): 93–105. https://doi. org/10.22267/rcia.143102.3.

Velasquez-Vasconez, P.A.; Velasquez-Vasconez, M.; Cardenas, C.; Skarsgard, O.N.; Eraso, H.R. 2021. Can higher CO2 concentrations affect yield and quality parameters in lettuce and sugar beet crops? Revista Verde de Agroecologia e Desenvolvimento Sustentável, 16(1): 27–32.




Como Citar

Velasquez Vasconez, P. A., Abregu Olarte, W. T. ., & Fortes, P. (2021). University community attitudes to the use of genetic editing. Quaestum, 2, 1–9.